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Abstract. We study a dynamics of texture for a two-component spinor bose condensate. This is carried
out by adopting a time dependent Landau-Ginzburg Lagrangian for a spinor order parameter. By using
a polar form of the spinor order parameter, we obtain a field equation for the texture. In particular we
consider a one dimensional model in which we can obtain analytic forms for the textures in terms of elliptic
functions of several kinds. We find that these solutions are characterized by a modulus parameter, and
changes in this parameter cause structural changes of texture.

PACS. 03.75.Mn Multicomponent condensates; Spinor condensates

1 Introduction

One of the most interesting subjects in condensed matter
physics is the study of the behavior of order parameters.
This may be done using a Landau-Ginzburg theory that
describes both the thermodynamic features and spatial
pattern of condensed states of materials [1]. The simplest
form of order parameter is given by a scalar function of
a real or complex variable. Typical examples are super-
fluid He4 and superconductivity [1,2], in which the order
parameters are given by complex wave functions (macro-
wave functions). On the other hand, it is well known that
there are many condensed systems which can be described
by an order parameter with several components. One of
these has been realized with the discovery of multicom-
ponent bose condensates, which have been formed by the
simultaneous trapping and cooling of atoms in distinct
hyperfine or spin levels [3–6]. The theoretical analysis of
spinor bose condensates has been developed for the case
of hyperfine spin 1 states (see e.g. [7,8]). The theoret-
ical analysis of the Bose-Einstein condensates has been
reviewed for example by Legget [9].

Condensed states described by order parameters with
several components can be characterized as anisotropic
fluids. Superfluid He3A is regarded as a typical example
of a quantum anisotropic fluid [10] and a liquid crystal
is a classical anisotropic fluid [11]. The characteristic con-
cept in anisotropic fluids is structure or texture. Intuitively
speaking, texture is a spatial pattern described by a di-
rectional field inherent in the components of the order

a e-mail: rp014029@se.ritsumei.ac.jp

parameter. The typical examples are the director vector
in a liquid crystal and the l-vector in superfluid He3A.

Having given a brief description of the features of
anisotropic quantum fluids, we address the dynamics of
texture in a spinor bose condensate. Specifically, we con-
sider the case that the order parameter has two compo-
nents. In order to treat this problem, we adopt a time-
dependent Landau-Ginzburg (LG) Lagrangian, which was
previously used by one of the authors [12]. As a special
case, we consider a one dimensional model, which leads to
analytic forms for the texture in terms of elliptic functions.
The LG Lagrangian adopted here is an extension of that
used for a scalar order parameter in superfluid He4 [2,13]
or for a vector order parameter in superfluid He3A [14].

2 General formulation

2.1 Lagrangian for the spinor bose field

To study a two component spinor Bose-Einstein Conden-
sate (BEC), we introduce the following order parameter.

Ψ(r, t) =
(
ψ1(r, t)
ψ2(r, t)

)
. (1)

The initial time dependent LG Lagrangian is

L =
1
2

�i

(
Ψ † ∂Ψ

∂t
− ∂Ψ †

∂t
Ψ

)
−H[Ψ, Ψ †] (2)

H[Ψ, Ψ †] =
[

�
2

2m
(∇Ψ †)(∇Ψ) − µΨ †Ψ + U [Ψ, Ψ †]

]
(3)
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where H [Ψ, Ψ †] is the Hamiltonian of the bose compo-
nents1. The last term in the Hamiltonian represents the
interactions between constituent particles, which is given
by quartic functions of the order parameter. From the vari-
ous choices of quartic interaction, we consider special cases
in which the interaction is given in terms of products of
bilinear forms, (Ψ †σjΨ)(Ψ †σkΨ) or (Ψ †Ψ)2, where, σj is a
Pauli matrix. In particular we choose

U [Ψ, Ψ †] = g1(Ψ †Ψ)2 − g2(Ψ †σzΨ)2. (4)

By using the variational principle, we obtain a Gross-
Pitaevskii type equation of motion for ψ1, ψ2.

i�
∂ψ1

∂t
= −

(
�

2

2m
∇2 + µ

)
ψ1 + g|ψ1|2ψ1 +A|ψ2|2ψ1

i�
∂ψ2

∂t
= −

(
�

2

2m
∇2 + µ

)
ψ2 + g|ψ2|2ψ2 +A|ψ1|2ψ2. (5)

Here, A = 2(g1 + g2) and g = 2(g1 − g2). The set of
equations (5) shows that the number of each component
is conserved.

2.2 Reduction to the hydrodynamical form

We rewrite the two complex fields ψ1, ψ2 in an alter-
native form. Two complex scalar fields mean that there
are four degrees of freedom, which will be expressed by
four real functions n(r, t), θ(r, t), ϕ(r, t), α(r, t). By using
these real functions, the order parameter can be written
in the form

Ψ =
√
n

(
cos θ

2

e−iϕ sin θ
2

)
e−iα (6)

where
√
n(r, t) is the amplitude which represents the total

density of two kinds of particle and θ(r, t), ϕ(r, t), α(r, t)
are the phases. Also, we define the spin field as

Sk =
1
n
Ψ †σkΨ (7)

where k = x, y, z, and σk is the Pauli matrix

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (8)

Using these definitions, S = (Sx, Sy, Sz) can be written as

Sx = sin θ cosϕ, Sy = sin θ sinϕ, Sz = cos θ. (9)

Thus, we can express the Lagrangian in terms of the new
variables.

L = �n

(
∂α

∂t
+
∂ϕ

∂t
sin2 θ

2

)
−H (10)

H = Hkin + Hint. (11)

1 In the following arguments, we omit the term coming from
the confined potential, because this does not play an important
role for describing the motion of texture.

Here, the first term in the Lagrangian (10), which includes
the first order time derivatives of ϕ and α, determines
the dynamical behavior of bose condensates. On the other
hand, the second term represents the kinetic energy and
interaction energy, which are given by

Hkin =
�

2

2m

{
(∇√

n)2 +
1
4
n(∇θ)2

+ 2n(∇ϕ) · (∇α) sin2 θ

2

+ n(∇ϕ)2 sin2 θ

2
+ n(∇α)2

}
(12)

Hint = −µn+
1
2
gn2

(
cos4

θ

2
+ sin4 θ

2

)

+ An2 sin2 θ

2
cos2

θ

2
. (13)

It should be noted that Hint does note include ϕ and α.
Now, we examine the content of kinetic terms of

Hamiltonian. This can be divided into two terms.

Hkin1 =
�

2

2m
n

{
(∇α) + (∇ϕ) sin2 θ

2

}2

(14)

Hkin2 =
�

2

2m

{
(∇√

n)2 +
1
4
n(∇θ)2 +

1
4
n(∇ϕ)2 sin2 θ

}
.

(15)

Equation (14) gives the fluid kinetic energy for the
anisotropic fluid, whereas equation (15) gives the internal
energy. In fact the velocity field of the anisotropic fluid is
defined by

vs =
�

m

{
(∇α) + (∇ϕ) sin2 θ

2
}

(16)

which is also derived from the current

j =
�

2i
{
Ψ †(∇Ψ) − (∇Ψ †)Ψ

}
= mnvs. (17)

Thus, we can write Hkin1 as

Hkin1 =
1
2
mnv 2

s =
m

2n
j 2. (18)

On the other hand, Hkin2 consists of two terms: one is
the term given by the density gradient and the other is
the term given by the gradient of each component of spin.
Thus we have

Hkin2 =
�

2n

2m

{
(∇ logn)2 +

1
4
(∇S )2

}
(19)

where ∇S = (∇Sx,∇Sy,∇Sz). The latter term is simi-
lar to the continuous limit of the Heisenberg model [15].
Alternatively, this corresponds to the bending energy of
elasticity theory [16].
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2.3 Equation of motion for the texture

We shall restrict the general argument given above by im-
posing the following conditions. (i) The density n(r, t) is
regarded as constant. This situation corresponds to the
London limit in superfluid He3. That is, the magnitude
of the order parameter is constant and the only angular
components (θ(r, t), ϕ(r, t)) are allowed to vary. An analo-
gous mechanical example would be a spherical pendulum
for which the length of the pendulum is fixed. (ii) The
overall phase is taken as α(r, t) = 0, which corresponds to
gauge fixing. Thus the Lagrangian becomes simply

L = �n
∂ϕ

∂t
sin2 θ

2
−H (20)

H =
�

2n

2m

{
1
4
(∇θ)2 + (∇ϕ)2 sin2 θ

2

}

− µn+
1
2
gn2

(
cos4

θ

2
+ sin4 θ

2

)
+An2 sin2 θ

2
cos2

θ

2
.

(21)

From the variational principle δ
∫
dtd3xL = 0, we obtain

the equations of motion

θ̇ = − 2
�n

1
sin θ

δH
δϕ

ϕ̇ =
2

�n

1
sin θ

δH
δθ

(22)

where δ
δf = ∂

∂f −∇· ∂
∂(∇f) means the functional derivative.

Using the concrete form of the Hamiltonian, we obtain

∂θ

∂t
=

�

m

1
sin θ

∇ ·
[
(∇ϕ)(1 − cos θ)

]

∂ϕ

∂t
=

�

2m

[
(∇ϕ)2 − 1

sin θ
∇2θ

]
+

4g2n
�

cos θ. (23)

These equations are the starting point for the following
discussion.

3 Analytic solvable model: one dimensional
case

3.1 Solving the problem

Now we examine the behavior of texture by studying spe-
cific models. For this purpose, we restrict our discussion to
the one dimensional case. Although a model with one spa-
tial dimension seems to be rather artificial, the possibility
of experimental realization may be not excluded. Such a
situation may be realized by a BEC in thin tube. For ex-
ample we consider the case that the BEC is trapped in y, z
directions by potentials V (y), V (z), whereas there is no
potential in the x direction. We choose the order parame-
ter Ψ = t

(
Φ1(x, t), Φ2(x, t)

)× Y (y)Z(z) where Y (y), Z(z)
are normalized wave packets, satisfying the steady state
Schrödinger equation. Then by averaging the action func-
tional over these wave packets, we have the effective cou-
pling constants g′, A′ (or g′1, g

′
2) and chemical potential µ′.

The details of this procedure are given in the appendix.
Hereafter we will write the effective coupling constant g′2
simply as g2. Furthermore, we choose the coupling con-
stant g2 to be positive. In the following argument, we
adopt several ansatze for the angular fields θ and ϕ, which
enable us to obtain explicit analytic solutions in terms of
elliptic functions.

Ansatz 1: θ(x, t) = θ(x), ϕ(x, t) = const. — In this
case, the equation of motion becomes

d2θ

dx2
=

8mng2
�2

sin θ cos θ (24)

which is identical with that of pendulum. Hence, it can be
integrated to give

(
dθ

dx

)2

=
mn

�2

{
8g2 sin2 θ + (C − 4g2)

}
(25)

where C is determined by the initial conditions θ0 and
dθ0/dx. The solution of equation (24) is given in terms of
Jacobi elliptic functions, which can be classified into three
cases, according to the value of the modulus parameter
defined by

λ =
√

8g2
4g2 + C

. (26)

(a) λ < 1: this corresponds to the rotating pendulum.
The solution of this case is

cos θ = sn
(
γ1(x+ k)

∣∣λ ) (27)

where γ1 and k are defined by

γ1 =

√
mn(4g2 + C)

�2

k =
1
γ1

F
(
θ0 +

π

2

∣∣ λ) . (28)

(b) λ > 1: this corresponds to the oscillating pendulum.
The range of oscillation is −λ−1 ≤ cos θ ≤ λ−1. The
solution is given by

cos θ = −λ−1sn
(
γ2(x+ k)

∣∣λ−1
)

(29)

where γ2 and k are defined by

γ2 =

√
8mng2

�2

k = − 1
γ2

F
(

arcsin
(
λ cos θ0

) ∣∣∣∣ λ−1

)
. (30)

(c) λ = 1: in this critical case, there are two solutions.
One is

cos θ =
1 − k2 exp[2γ2x]
1 + k2 exp[2γ2x]

(31)

where k = tan θ0
2 . This solution has the property that

cos θ → −1 for x→ ∞ The other is

cos θ =
1 − k2 exp[−2γ2x]
1 + k2 exp[−2γ2x]

(32)

which behaves as cos θ → 1 for x→ ∞. These solutions
exhibit a kink-like behavior.
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Fig. 1. Profile of cos θ for the case of ansatz 1. The labels (a),
(b), (c) correspond to the cases indicated in the text.

The behaviors of the three solutions are depicted in
Figure 1.

Ansatz 2: θ(x, t) = θ(x), ϕ(x, t) = ϕ(x) — This is a
general case of ansatz 1. The equation of motion becomes

d2θ

dx2
= 2
(
dϕ

dx

)2

sin
θ

2
cos

θ

2
+

8mng2
�2

sin θ cos θ

�
2

m

d

dx

(
dϕ

dx
sin2 θ

2

)
= 0. (33)

By using the integral derived from the second equation,
we have a reduced equation for θ

(
dθ

dx

)2

=
m

�2

1
1 − cos θ

[
−C2 +D(1 − cos θ)

− 4ng2(2 cos2 θ − 1)(1 − cos θ)
]

(34)

where C,D are determined by the initial conditions,
θ0, ϕ0, dϕ0/dx and dθ0/dx. It can be rewritten as

(
dx

d cos θ

)2

=
�

2

8mng2
1

F (cos θ)
(35)

where F (cos θ) is a quartic function of cos θ. We have
two cases according to the choice of initial conditions:
(i) F (cos θ) has four real roots [−1, α, β, γ] (such that
−1 < α < β < γ) thus

F (cos θ) = (cos θ+1)(cos θ−α)(cos θ−β)(cos θ−γ) (36)

and (ii) F (cos θ) has two real roots and two complex roots
which are conjugate to each other. In what follows we
restrict our consideration to case (i) for which the solution
is given by

cos θ =
α(β + 1) + (β − α)sn2

(
Γ (x+ k)

∣∣Λ )
(β + 1) − (β − α)sn2

(
Γ (x+ k)

∣∣Λ )

ϕ =
√

2m
�

C

∫
dx

1 − cos θ
(37)

where

k =
1
Γ

F

(
arcsin

(√
(β + 1)(cos θ0 − α)
(β − α)(cos θ0 + 1)

)∣∣∣∣∣Λ
)

Γ =

√
8mng2(γ − α)(β + 1)

2�

Λ =

√
(β − α)(γ − 1)
(β + 1)(γ − α)

. (38)

This corresponds to an oscillating pendulum, and the be-
havior of the solution is shown in Figure 2.

Ansatz 3: θ(x, t) = θ(x), ϕ(x, t) = ωt/4 — This is a
model in which ϕ rotates with constant angular velocity.
The equation of motion is thus

d2θ

dx2
=
mω

2�
sin θ +

8mng2
�2

sin θ cos θ (39)

which can be integrated to give

(
dθ

dx

)2

=
m

�2

[
−�ω cos θ − 4g2n cos 2θ + C

]
(40)

where C is determined by the initial conditions θ0 and
dθ0/dx. Equation (39) can be rewritten as

(
dx

d cos θ

)2

=
�

2

8mng2
1

(cos θ + 1)(cos θ − c−)

× 1
(cos θ − c+)(cos θ − 1)

(41)

where c− ≤ c+. Thus, the solutions of equation (40) are
given by elliptic integrals, which can be classified into
three cases according to the values of c+ and c−: (a’) c− ≤
−1 ≤ cos θ ≤ 1 ≤ c+ (b’) c− ≤ −1 ≤ cos θ ≤ c+ ≤ 1
(c’) − 1 ≤ c− ≤ cos θ ≤ c+ ≤ 1.

(a’) For the case c− ≤ −1 ≤ cos θ ≤ 1 ≤ c+,

we have

cos θ =
2c−sn2

(
Γ1(x+ k)

∣∣Λ )+ (1 − c−)
2sn2

(
Γ1(x+ k)

∣∣Λ )− (1 − c−)
(42)

where

k =
1
Γ1

F

(
arcsin

(√
(1 − c−)(cos θ0 + 1)

2(cos θ0 − c−)

) ∣∣∣∣∣Λ
)

Γ1 =

√
2mng2(1 + c+)(1 − c−)

�2

Γ2 =

√
4mng2(c+ − c−)

�2

Λ =

√
2(c+ − c−)

(1 + c+)(1 − c−)
. (43)

This corresponds to the oscillating pendulum.
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Fig. 2. Profile of cos θ and ϕ for the case of ansatz 2.

(b’) For the case c− ≤ −1 ≤ cos θ ≤ c+ ≤ 1,
cos θ oscillates in the range [−1, c+], such that

cos θ =
c−(1 + c+)sn2

(
Γ2(x+ k)

∣∣Λ−1
)

+ (c+ − c−)
(1 + c+)sn2

(
Γ2(x+ k)

∣∣Λ−1
)− (c+ − c−)

k =
1
Γ2

F

(
arcsin

(√
(c+ − c−)(cos θ0 + 1)
(1 + c+)(cos θ0 − c−)

) ∣∣∣∣∣Λ−1

)
.

(44)

(c’) For the case −1 ≤ c− ≤ cos θ ≤ c+ ≤ 1,
cos θ oscillates in the range [c−, c+], such that

cos θ =
c−(c+ + 1) + (c+ − c−)sn2

(
Γ1(x+ k)

∣∣Λ )
(c+ + 1) − (c+ − c−)sn2

(
Γ1(x+ k)

∣∣Λ )

k =
1
Γ1

F

(
arcsin

(√
(c+ + 1)(cos θ0 − c−)
(c+ − c−)(cos θ0 + 1)

) ∣∣∣∣∣Λ
)
.

(45)

The behaviors of these solutions are shown in Figure 3.

3.2 Remarks

The solvable models considered here have the peculiar fea-
ture that the solutions can be written in terms of elliptic
functions which are controlled by specific parameters that
are inherent in the solutions themselves. These parame-
ters, λ,Λ, are called modulus parameters and are deter-
mined by the initial conditions as well as the coupling
constant. A structural change of texture occurs as the
modulus parameter varies. This feature may be regarded
as a “cross over” between solutions, and this may be con-
sidered as a characteristic of the one dimensional model.

4 Brief summary

We have studied the dynamics of texture inherent in
spinor bose condensates, specifically for the case of a two-
component bose condensate. This has been formulated by

Fig. 3. Profile of cos θ for the case of ansatz 3. The labels (a′),
(b′), (c′) corresponds to the cases indicated in the text.

using time-dependent Landau-Ginzburg theory. The ana-
lytic form of the texture has been written down in terms of
elliptic functions for a one dimensional model by adopting
specific for the form of the texture.

There are two obvious problems following on from this
work. One is to extend the present idea to 2 or 3 di-
mensions, which may reveal more characteristic aspects
of texture, and in particular, the dynamics of a vortex.
The other is to extend the argument from a two compo-
nent spinor to the case of a general spinor. This has been
briefly discussed by using the SU(2) coherent state [12]
and further studies need to be carried out. These topics
are left for forthcoming papers.

We would like to thank Professor H. Yabu for useful
suggestions.

Appendix

Here we give the details of the derivation of the quasi-one
dimensional effective action that is used in Section 3. The
action functional which includes the confining potential in
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the y and z directions is

S[Ψ, Ψ †] =
∫
dt

∫
dxdydz

[
i�

2

(
Ψ † ∂Ψ

∂t
− ∂Ψ †

∂t
Ψ

)

+
�

2

2m
(∇Ψ †)(∇Ψ)−(µ− Vy(y)−Vz(z))Ψ †Ψ+U [Ψ, Ψ †]

]
.

(46)

Let Y (y) satisfy the steady state Schrödinger equation

− �
2

2m
d2Y (y)
dy2

+ V (y)Y (y) = εyY (y) (47)

with a similar equation for Z(z). Then we obtain the ef-
fective action for Φ1 and Φ2

Seff =
∫
dt

∫
dx

⎡
⎣ ∑

i=1,2

{
i�

2

(
Φ∗

i

∂Φi

∂t
− ∂Φ∗

∂t
Φi

)

+
�

2

2m

∣∣∣∣∂Φi

∂x

∣∣∣∣
2

− µ′|Φi|2 + g′|Φi|4
}

+A′|Φ1|2|Φ2|2
]

(48)

where we define the new parameters

µ′ = µ+ εy + εz, g′ = g

∫
dydz|Y (y)|4|Z(z)|4

A′ = A

∫
dydz|Y (y)|4|Z(z)|4. (49)

According to the above calculation, we can see that the
trapping of the BEC in two directions changes the cou-
pling constants. For example, when we choose the poten-
tial and wave packets as

V (y) =
1
2
mω2y2, Y (y) =

(
mω

π�

) 1
4

exp
(
−mω

2�
y2

)
(50)

with a similar expression for Z(z), the coupling constants
become

µ′ = µ+ �ω, g′ =
mωg

8�
, A′ =

mωA

2�
. (51)
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